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ABSTRACT

We present SurveySim: a new public Markov Chain Monte Carlo (MCMC) code which uses only color

and flux information to constrain the evolution of galaxy luminosity functions. This code is designed

to be easily adaptable, with luminosity function and SED model prescriptions fed into it externally.

Here we adopt our new IR SED template library which includes SED models for star-forming galaxies,

composites, and AGN, as well as their redshift and luminosity evolution. The code converges on a

best model by simulating the density of galaxies in diagnostic color-magnitude plots. We demonstrate

SurveySim’s use by using the HerMES COSMOS survey data and two diagnostics: log(S350/S250) vs.

log(S250) and log(S250/S24) vs. log(S24). We find that a luminosity function consisting of a double

power-law with a relatively steep faint-end slope (β = 0.6) gives the best results. Consistent with

previous studies, we find strong luminosity evolution (∝ (1 + z)3.8) up to z∼ 2 but at z > 2 both the

luminosity and density evolution are negative. Our models are consistent with a range of observational

data including luminosity functions, number counts, redshift distributions, CIB intensity and redshift

breakdown. This agreement is achieved without incorporating any knowledge of the redshifts of our

sources, or prior knowledge of how the IR luminosity function should evolve with redshift. Therefore,

SurveySim has the potential to evolve into a useful tool to analyze data from current and upcoming

large extragalactic surveys where only limited photometric coverage and even more limited redshift

coverage exists.

Keywords: galaxies: evolution, luminosity function, statistics – infrared: galaxies – methods: statisti-

cal

1. INTRODUCTION

The recent generation of sensitive infrared space and ground-based survey facilities (e.g. Spitzer, Herschel, WISE1,

ALMA) has allowed us to move from a few tens of dusty high-redshift galaxies just a couple of decades ago, to tens of

thousands today. This has truly opened up the study of dust obscured star-formation throughout the history of the

1 For details on each see Werner et al. (2004); Pilbratt et al. (2010); Wright et al. (2010). Also see Casey et al. (2014) for a more extensive
list.
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Universe (see Casey et al. 2014, for a review). However, we are not yet taking full advantage of this wealth of data, since

the vast majority of these sources likely never will have individual spectroscopic redshift measurements. Moreover, we

do not yet have a clear understanding of the full selection biases associated with the different IR-bright populations

studied in the literature - a limitation largely due to our lack of consensus of the range of SEDs of dusty, high-z

galaxies. The latter includes an incomplete accounting of the role of AGN in the IR emission of galaxies (Kirkpatrick

et al. 2015, Roebuck et. al. 2016, subm.). These factors lead to significant uncertainties in the IR luminosity function

estimates even locally (see Figure 1).

This paper presents a new MCMC-based code, SurveySim, which is designed to specifically address the above

limitations. It is inspired by earlier efforts to use MCMC to model the BLAST number counts (Marsden et al. 2011)

which recover the luminosity function evolution parameters as well as SED template color evolution. SurveySim is

also inspired by Milky Way structure studies which do not model individual stars, but rather stellar populations using

Hess diagrams, where optimizing between the model and observed Hess diagram recovers the 3D stellar distribution

as well as the star-formation history (e.g. de Jong et al. 2010). A Hess diagram is the binned density of stars in

a color-magnitude diagram - ideal when modelling large populations, such as Galactic stars detected by the SDSS.

Similarly, SurveySim models the density of galaxies in color-magnitude or color-color plots, recovering the evolution

of the luminosity function. Useful by-products are the number counts, redshift distribution, and contribution to the

Cosmic Infrared Background (CIB; for a review see Hauser & Dwek 2001). We stress that this is a statistical approach,

not designed to recover parameters for individual galaxies, only for whole populations. With sufficient statistics, it can

be complementary to the traditional, observationally-expensive spectroscopic follow-up of relatively small sub-samples

(e.g. Casey et al. 2012). Indeed, Christlein et al. (2009) already demonstrate the ability of a maximum likelihood

fit to a color-magnitude diagram to recover the evolution of the optical luminosity function without galaxy redshifts.

SurveySim does this, currently, for the infrared luminosity function, but importantly is designed to be adaptable and

scalable.

Figure 1. Local total IR luminosity function measurements restricted to those that include both star-forming galaxies and
AGN (Saunders et al. 1990; Goto et al. 2011; Gruppioni et al. 2013, here S90, G11, G13). Solid lines correspond to LIR ranges
where the LF is directly constrained by data, dotted lines represent extrapolations. We have rescaled all to match our adopted
cosmology and LTIR definition. While there is broad agreement, the spread is a factor of ∼ 3 for most luminosities, due to
selection biases.

As in all efforts to model galaxy evolution, our results are dependent on the choice of SED templates. To address

that, our group has been engaged in an effort to define a new SED template library2 which, crucially, does a careful

2 This library is now publicly available through: http://www.astro.umass.edu/~pope/Kirkpatrick2015/

http://www.astro.umass.edu/~pope/Kirkpatrick2015/
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decomposition of the effects of AGN on the IR SED (Kirkpatrick et al. 2015). However, to ensure that any future

improvements of our knowledge of the SEDs of dusty galaxies can be easily incorporated, the SED library is not

hardwired into the code, but rather fed into it externally. A key and unique feature of SurveySim is its very general

design, allowing for a wide range of different galaxy populations, luminosity function forms, SED templates, and

photometric filters to be used. The current implementation is limited to the infrared (3–1000µm), although we are

planning on extending this range (e.g. Silva et al. 2016 in prep.).

The MCMC approach allows us to examine exactly the constraining power of the particular galaxy population being

modeled. It also allows for detailed examination of the degeneracies between the fitted parameters. In upcoming

papers, we consider dusty high-z galaxies selected at different parts of the IR SED giving us insight into the relative

selection biases (Bonato et al. 2016 in prep; Silva et al. 2016 in prep.).

The structure of this paper is as follows. In Section 2, we discuss the two Herschel SPIRE datasets being modeled. In

Section 3, we present details of the galaxy evolution modeling, including luminosity function parametrization and SED

template library. In Section 4 we describe our MCMC implementation. In Section 5, we present the results of simulating

our samples. The best-fit luminosity functions, number counts, redshift distributions, SFR density and contribution

to the CIB are compared with a range of published results. In Section 6, we discuss the broader implications of the

current results as well as future improvements of SurveySim. Section 7 presents the summary and conclusions. We

include two appendices for the more technical aspects of SurveySim. Throughout this paper we adopt a flat Universe

with ΩM = 0.272, ΩΛ = 0.728, and H0 = 73.8km/s/Mpc (based on the WMAP results Komatsu et al. 2011). We

chose the WMAP cosmological model here for ease of comparison with earlier studies.

2. DATA

We model two Herschel SPIRE samples, one 24 µm-selected and one 250µm-selected. Both are drawn from the

Herschel Multi-tiered Extragalactic Survey (HerMES; Oliver et al. 2012) COSMOS field and the catalogs are obtained

from the Herschel Database in Marseille3. The 24µm-selected sample is the published “Spitzer-prior” catalog which is

based on the 2 deg2 MIPS 24µm-coverage of the field. For the 24µm sample, the 250µm flux densities were estimated

at the positions of the known 24µm sources, including deblending of the SPIRE signal as needed. The 250µm-selected

sample is the “blank” catalog based on the total 4.78 sq.deg. SPIRE coverage of the field (which reaches a nominal

5σ depth of 8 mJy). We use the band-merged point-source catalog from the second data release (Oliver et al. 2012)

including photometry for the three SPIRE wavelengths. This catalog is constructed by convolving the 250, 350 and

500µm filters at locations corresponding to the single-band 250µm sources detected by HerMES, as described in Oliver

et al. (2012). These two catalogs are affected by different potential biases; their joint fits should thus be more robust

than a fit to either alone.

The confusion noise, which is significant for SPIRE (especially the blank-sky photometry), is described in Wang

et al. (2014), along with the methods to account for and partially mitigate its effect in the published catalogs. This

confusion leads to significantly higher 1σ uncertainties on the blank-sky SPIRE photometry as opposed to the Spitzer-

prior photometry. For the 24µm-selected sample, we adopt a 24µm flux density limit of 60µJy and a 1σ uncertainty
of 0.16µJy – this is coupled with a 250µm flux density limit of 8 mJy (to match the 250µm-selected survey) with

a 1σ uncertainty of 2 mJy. For the 250µm sample the 1σ uncertainty is 6.95 and 6.63 mJy at 250µm, and 350µm

respectively (the uncertainties are the median values in the respective catalogues). Note that obviously an 8 mJy

source in the blank-sky 250µm-selected catalog does not constitute a formal detection. However, we also incorporate

the survey incompleteness in our modelling, which translates to a negligible fraction of modelled sources with such flux

densities being included when we simulate the 250µm-selected sample. Therefore a flux density limit of 8 mJy here is

largely a formality.

3. SIMULATING A GALAXY SURVEY

We simulate a survey by stepping through the binned redshift-luminosity space, generating N galaxies according to

the luminosity function, and assigning each galaxy a random luminosity and redshift within the L− z bin. Here “L”

refers to the total IR luminosity, LTIR, which is the integrated 5-1000µm luminosity. The number of galaxies expected

in a given bin is prescribed by the luminosity function, specifically:

N(L, z,Ω) ≈ Φ(L, z)
dVc
dzdΩ

(z)Ω∆z∆ logL (1)

3 http://hedam.lam.fr/HerMES/index/download

http://hedam.lam.fr/HerMES/index/download
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Figure 2. Our default library is binned by LTIR in 17 bins (see section 3.3 for details). For clarity we show only 4 bins here:
log(LTIR/L�) = 9.75, 10.75, 11.75 and 12.75. The templates in the higher-z bins are based on Kirkpatrick et al. (2015) as
described in the text. Left: The SFG templates, where for the z = 0 and the higher-z log(LTIR)<11.5 ones we adopt the Rieke
et al. (2009) templates. Middle: The Composite templates, where the z = 0 ones are all rescaled from the NGC6240 SWIRE
library template. Right: The AGN templates, where the z = 0 templates are all rescaled from the Mrk231 SWIRE library
template. The differences between the solid, dashed, and dot-dashed curves, especially among the SFGs highlight the SED
evolution build into our SED library. However, note that for the z > 0 Composite and AGN templates there is limited data in
the far-IR/sub-mm translating into substantial uncertainties in the templates in this regime.

For this calculation, we use the log(L) and z values corresponding to the center of the L-z bin, such that a given

redshift bin i is defined as z ∈ (zi −∆z/2, zi + ∆z/2] and a given luminosity bin j is defined as log(L) ∈ (log(Lj) −
∆ log(L)/2, log(Lj) + ∆ log(L)/2]. 4 For each redshift-luminosity bin, we determine N , which is inherently a non-

integer value. This is rounded-off to an integer by using a uniform random variate between 0 and 1 to determine

whether to round downward or upward.

In addition, each of the N sources is ascribed a luminosity and redshift according to a triangular distribution within

the given luminosity redshift bin, which approximates the change in density as linear with L and z within each bin.

This implies that the luminosity and redshift bins should not be too coarse or else the triangular approximation fails,

nor too fine or else the probability of finding at least 1 galaxy per bin becomes too small.

The SED template library gives us the observed flux density (see e.g. Hogg et al. 2002) for a given luminosity,

redshift, and spectral type (e.g. starburst or AGN). This is done via:

Sν =
(1 + z)

4πd2
L

∫∞
0
Lν(1+z)Tνdν∫∞
0
Tνdν

(2)

where ν ≡ νobs, dL is the luminosity distance5, Lν(1+z) is the specific luminosity for a given SED template in the

emitted frame, Tν is the filter transmission curve, and the (1 + z) factor arises from dνem/dνobs = (1 + z). We apply

observational error to these flux densities in the form of a random Gaussian variate with a σ corresponding to the

typical uncertainty in the survey being simulated. Lastly, we apply the same selection (e.g. limiting flux density in a

particular band) to these simulated galaxies as the observed survey we are fitting.

3.1. Completeness Corrections

SurveySim includes completeness correction curves to account for the different source detection efficiency as a

function of flux density. For example, for the Herschel SPIRE 250µm-selected sample, we adopt the completeness

curves derived in Wang et al. (2014) where S250 ∼ 12 mJy corresponds to 50% completeness and 100% completeness

is reached by ∼40 mJy. We tested for incompleteness among the 24µm-selected sample by comparing our measured

differential 24µm number counts with published values, and found this sample to be complete above the adopted

60µJy flux density limit, therefore no completeness correction was applied to it. In SurveySim, we accept a simulated

4 In this paper, we adopt a luminosity range of logLTIR = 9.00 - 13.00 with ∆logLTIR = 0.25, corresponding to the sampling of our SED
library. Our default redshift range is 0.1-5.0 with ∆z= 0.1.

5 We compute the luminosity distance and co-moving volume using numerical integration in redshift steps of z = 0.001.
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source with a given flux density with probability given by the completeness function.

3.2. The Luminosity Function

SurveySim allows for three potential functional forms for the luminosity function: a Schechter function (“S”; Eq 3;

e.g. Blanton et al. 2003), a modified Schechter function (“MS”; Eq 4; e.g. Gruppioni et al. 2013), and a double power-law

(“PL”; Eq 5; e.g. Negrello et al. 2013).

ΦS = Φ∗
( L
L∗

)α
exp

[
− L

L∗

]
(3)

ΦMS = Φ∗
( L
L∗

)1−α
exp

[
− 1

2σ2
log2

10

(
1 +

L

L∗

)]
(4)

ΦPL = Φ∗

[(
L

L∗

)α
+

(
L

L∗

)β]−1

(5)

In all cases, Φ∗ and L∗ are functions of redshift and we adopt the parameterizations

Φ∗(z) = Φ∗0(1 + z)p (6)

L∗(z) = L∗0(1 + z)q (7)

where p denotes density evolution, and q denotes luminosity evolution. We allow for two break redshifts, where the

power of the density (zbp) and luminosity (zbq) evolution changes6. In subsequent sections, p1 and q1 denote the

evolution from these break redshifts until the present day, whereas p2 and q2 denote the evolution at redshifts higher

than the respective break redshifts.

3.3. SED Templates

Since our understanding of the range of high-z galaxy SEDs is still evolving, it is important to note that our SED

Template library is not hardwired into SurveySim. Instead, it is read into it as a stand-alone fits file with different

fits extensions corresponding to different SED types, and/or redshift bins. We chose this structure in order to allow

us to easily update the SED library without a need to modify the code itself. SurveySim adopts its wavelength and

luminosity arrays as well as the SED type mix from this external fits file, which will facilitate future extension into

other wavelength regimes. Our default SED library includes 3 SED types: star-forming galaxies (SFG), Composites

and AGN. It also incorporates 3 redshift bins: “z ∼ 0” or z = 0 − 0.499, “z ∼ 1” or z = 0.5 − 1.2, and “z ∼ 2 or

z > 1.2. These SED types and redshift bins are determined based on the redshift bins in the Kirkpatrick et al. 2015

comprehensive SED templates which form the core of our library. This library is based on an exceptional sample of 343

dusty galaxies with mid-IR IRS spectra as well as a wealth of ancillary data covering the near- to far-IR regime. The

IRS spectra allow for accurate spectral classification, separating out star-forming galaxies (SFG), AGN and composites.

This library however does not include z < 0.5 nor LIR . 1011L� sources.

For the z ∼ 0 SFG templates, we adopt the SED library of Rieke et al. (2009), who construct a set of templates

from averaged fits of theoretically based models to local IRAS 60µm-selected galaxies. Their templates are binned

in terms of total-IR luminosity, LTIR, from 109.75 − 1013L� in bins of 0.25 dex. We extend this down to 109.00, by

assuming constant SED shape below 109.75. With this modification, we adopt this luminosity binning for our default

SED library, re-scaling the Kirkpatrick et al. (2015) templates as needed. For the z ∼ 0 Composite templates, we adopt

the SWIRE library NGC6240 template (Polletta et al. 2007), re-scaled to each of our luminosity bins. Similarly, for

the z ∼ 0 AGN templates, we adopt the SWIRE library Mrk231 template, re-scaled to each of our luminosity bins. We

analyzed the IRS spectra of NGC6240 and Mrk231 in the same manner as our supersample above and found them to

be consistent with our definition of a composite and AGN sources respectively. Figure 2 illustrates our template library

highlighting the apparent SED evolution within the SFG, Composite and AGN sub-classes. Note that for Composites

and AGN at z > 0, there are typically few individual detections in the far-IR therefore effects in this regime such as

seen among the z ∼ 1 sources should be viewed with caution. The limitations of the current library are discussed in

Section 6.1, along with planned future improvements.

6 To allow for smooth transition, after the break, we use the parametrization Φ∗(z) = Φ∗(zbp)(1 + z − zbp)p2 .
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Figure 3. The ratio of the AGN (Lacy et al. 2015) to total LF (Goto et al. 2011). To correct for the difference in redshift bins
between the two, we evolved the Φ∗ and L∗ values in the Goto et al. (2011) LF to the mean redshift of the bin in Lacy et al.
(2015), using q = 4.9 and p = −0.98. We also show the local AGN fractions in different luminosity ranges estimated directly
from the presence of AGN-excited optical and/or mid-IR lines (Veilleux et al. 1999; Goulding & Alexander 2009; Yuan et al.
2010; Petric et al. 2011, ; V99, G09, Y10, P11). The thick dashed red curve represents the power-law approximation we adopt
in SurveySim (see Equation 8).

3.3.1. Including different SED types

To incorporate different galaxy populations, we choose to model the total LF and parametrize the fraction of it due

to the different populations (as opposed to modelling several different LFs for example). However, in either approach,

simplifying approximations need to be made both to avoid an excessive number of free parameters (and associated

degeneracies) and to bolster our incomplete information.

We have no knowledge of the LF of AGN-SFG composites as opposed to AGN-dominated sources, so we will aim to

parametrize the fraction of sources, as a function of LTIR that contain AGN regardless of their energetic dominance.

The most recent and complete estimate of the local AGN LF is that based on mid-IR selected, spectroscopically-

confirmed AGN of Lacy et al. (2015)7. We confirmed that this selection largely includes both our AGN and AGN+SFG

composites since in the Kirkpatrick et al. (2015) sample, upon which our templates are based, 95% of the AGN and

70% of the Composites fall within the Lacy wedge for IRAC color-color selection of AGN.

Figure 3 shows the ratio of the AGN luminosity function to the total LF, where we adopt the Goto et al. (2011)

AKARI-based local LF. We chose this one as it has the best high-L coverage, thanks to the large volume sampled.

We note however, that the Lacy et al. (2015) LF is computed over the range z= 0.05-0.4, whereas Goto et al. (2011)

covers z= 0-0.1. To allow for direct comparison, we apply luminosity and density evolution to the Goto et al. (2011)

consistent with our best-fit model presented in Section 5 to shift it to an effective redshift of 0.23. The ratio between

the AGN and total LF is then compared with direct measurements of the AGN fraction based on the detectability of

AGN-excited optical and/or mid-IR lines.

Reassuringly, these direct measurements are roughly consistent with the LF ratio. The only outlier is the Goulding

7 Lacy et al. (2015) present both a total LF, and individual LFs based on AGN type all in terms of L5um. We apply conversion factors
to LTIR specific to each type and then add up the resultant LFs to obtain the total AGN LF in terms LTIR. We also correct for differences
in the adopted cosmology
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& Alexander (2009) measurement who used [Nev] 14.3µm detectability to find a large AGN fraction for LIR < 1011L⊙
sources. Their sample however is quite small (15 objects). In a sample more than an order of magnitude larger, Petric

et al. (2011) find a smaller fraction using the same line as a diagnostic. The difference may also be due to differences

in relative sensitivity, so the Goulding & Alexander (2009) result may suggest more low-level deeply obscured AGN

activity (see also below). We note the upturn in the AGN fraction at low-L; however, the Lacy et al. (2015) data do

not sample this range and the uncertainties in the faint end slope of both the Lacy et al. (2015) and Goto et al. (2011)

LFs make this extrapolation very unreliable.

We caution that the optical line diagnostics in the above studies effectively separate out Seyfert nuclei. The recent

study of Yuan et al. (2010) accounts also for optical starburst-AGN composites. Including these gives roughly twice

the AGN fraction given above, while preserving the trend of increasing AGN fraction with IR luminosity. We did

not adopt this for this paper, because it is not entirely clear yet how these optically-defined composites compare with

mid-IR defined composites. In addition, the question of the AGN fraction is degenerate with the details of the SED

library adopted (see Section 6 for further discussion). To test this issue, we ran the models presented here with a

modification allowing for double the z ∼ 0 AGN fraction than allowed for by default, but found the results to be

worse. As stated above, this conclusion is degenerate with the SED library adopted.

With these caveats in mind, Figure 3 suggests that a reasonable approximation to these different estimates of the

AGN fraction is a power-law of the form:

fAGN,z = fAGN,0 ∗ [log(LTIR)/12]fp ∗ (1 + z)t (8)

where fAGN,0 represents the z ∼ 0 AGN fraction at log(LTIR)=12, fp is the fraction power index, and t parametrizes

the evolution of the AGN fraction with redshift. In Figure 3, we adopt fAGN,0=0.28, and fp=12 respectively. The

functional form is assumed to be fixed, but the fraction of AGN is allowed to evolve as shown in Equation 8. As done

previously, we take t ≡ t1 until a break redshift, zbt and t ≡ t2 after the break redshift8. Lastly, we assume that the

Composite sources represent a fixed fraction of all AGN. This fraction is given by a single parameter fComp.

It is clear that the constancy of the AGN fraction functional form (i.e. that the total and AGN functional forms do

not evolve in their shape, only in their relative amplitudes) maybe incorrect. Lacy et al. (2015) study the evolution of

the AGN LF and a model with fixed slopes and only the usual luminosity and density evolution, although not unique,

is consistent with the data. An even bigger assumption, is that the composite fraction is constant with redshift, but

this represents our lack of knowledge on this issue. The parametrization of the different SED types and the associated

redshift evolution represent the largest uncertainties in the current implementation of SurveySim. As our knowledge of

the evolution of the AGN LF and the role of composites therein improves in the future, this can be easily incorporated

into SurveySim.

Lastly, we note that the above definition of fAGN differs from what we use in Kirkpatrick et al. 2015 or Roebuck et

al. (2016, subm). In these papers, we use fAGN to mean the fraction of LTIR for a given galaxy that is AGN-powered.

In this paper, it is the fractino of galaxies in a given L − z bin that are classified as either AGN or starburst-AGN

composites. However, when we estimate the evolution of the global star-formation rate density, we make use of the

median values for the fraction of LTIR due to star-formation vs. AGN as a function of galaxy type derived in Roebuck

et al. (2016, sum.).

3.4. Fitting Metrics

The fitting metrics allowed in SurveySim are either a color-color or color-magnitude plot. In this paper, we use

the latter. Specifically, for both the observations and the simulated data, we produce a two dimensional histogram,

with each axis being either a color (defined as log(fx/fy)) or “magnitude” (defined as log(fx)). Examples for the two

SPIRE samples are shown in Fig. 4. The best-fit solution is then found by minimizing a χ2-like statistic between the

two histograms. The details of implementing such 2D histogram fitting are non-trivial and are discussed in detail in

Appendix A.

If one axis is a magnitude, the 2d histogram fitting is essentially a simultaneous fit to the number counts in that

magnitude and the color distribution. We choose this approach as including colors in the fit allows us to partially

alleviate the degeneracy between SED templates and the evolution of the LF. Without the right SEDs, the color

distribution cannot be reproduced by merely adjusting the level of luminosity or density evolution. A second motivation

is that rare populations with unusual SEDs can in principle be detected in the residuals of the observed and simulated

8 Similar to the density and luminosity evolution, to have a smooth transition, after the break we use fAGN,z = fAGN,zbt (1 + z− zbt)
t2 .
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2D histograms, which cannot be done fitting number counts alone (see Section 6.1).

4. MARKOV CHAIN MONTE CARLO FITTING

Markov Chain Monte Carlo (MCMC) consists of random deviations from an initial guess (drawn from proposal

distributions), and an algorithm to decide whether to accept these deviations (the sampling algorithm). The accepted

guesses form a Markov chain as each guess only depends on the previous one and not on the earlier history or initial

state. The location of the initial guesses, the width of the proposal distributions, and the leniency of the sampling

algorithm in accepting guesses (which is controlled by a temperature-like parameter) all determine the speed with

which the code converges on the best solution. To ensure good coverage of the parameter space, and avoid getting

stuck in a local minimum, multiple chains are often initiated (see e.g. Dunkley et al. 2005; Ross 2013, for more details).

In the following sub-sections, we describe our particular implementation of MCMC.

4.1. Sampling

For our proposal distribution, we adopt a multivariate Gaussian distribution, which generates correlated random

deviates. This function has the form:

P (XR; Σ) =
1√

(2π)n|Σ|
exp

[
−xTΣ−1x

2

]
(9)

where x is an input vector containing the n sampled parameters, Σ is the n×n parameter covariance matrix, and XR

is the randomly generated parameter vector. The variance of each parameter is initially chosen based on the user set

limits at run-time, with parameters assumed independent (Σij = σ2
i δij) but is adjusted during the course of simulation

to take into account early priors and make sampling more efficient through regular re-computation of the covariance

matrix between all parameters.9. The trade-off between small and large variance is completeness of sampling versus

resolution of sampling for a given time period.

Next, we adopt the Metropolis-Hastings sampling algorithm (Metropolis et al. 1953; Hastings 1970), which consists

of the following steps (see also Johnson et al. 2013):

1. Draw a random deviate from the proposal distribution thus displacing each parameter from its last accepted

value, Xi, to a new one, Xi+1.

2. Calculate the acceptance likelihood, based on the difference in χ2 achieved with the last accepted and proposed

parameter sets and a simulation temperature which controls how likely are large deviations to be accepted

(“hotter” runs mean the code can make bigger jumps, and vice versa):

Pacc = exp

[
−∆χ2

T

]
(10)

3. Accept any guess that improves the χ2 (where Pacc > 1), but also accept some guesses with worse χ2 by

generating a uniform random variate between 0 and 1, U , and accepting a guess if U is less than Pacc:

Accept(Xi+1|U,Pacc) =

True U < min[1, Pacc]

False U ≥ min[1, Pacc]
(11)

4. Repeat until convergence criteria are satisfied (see Section B).

To improve the sampling of parameter space we use 5 independent chains started at random points in our sampling

space, with each chain run at the same temperature. The multiple chains help us find the global maximum in the

likelihood surface as well as test convergence (see Appendix). During initial sampling, both the temperature of the

chains and the covariance matrix used for sampling are adjusted at various intervals (see Section 4.2). The covariance

matrix is computed considering all samples in the latter half of all chains, and thus the resulting best-fit parameters

come from the converged samples of all 5 chains.

9 It is often stated that assumption of initial parameters and adjustment of covariance during fitting adds bias to the fit, however it
can be shown that the assumption of zero covariance between parameters and equal gaussian variance is a bias in itself(Joachimi & Taylor
2014)
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4.2. Acceptance Optimization

Acceptance optimization involves tuning the acceptance rate such that we maximize our chances of both isolating

the true global best-fit parameter vector while efficiently sampling enough of the surrounding likelihood space to allow

the parameter uncertainties to be determined. Johnson et al. (2013) and Dunkley et al. (2005) cite an ideal acceptance

rate of 25%. Both are achieved during an initial “burn-in” period which is discarded in the parameter uncertainty

estimation.

We implement a simple regression algorithm to adjust the temperature of the Metropolis-Hastings sampler to main-

tain the acceptance rate within the desired range (20-30%). We compute the average acceptance rate at regular intervals

(defaulted to every 10 MC steps in the burn-in period), adjusting the temperature according to the steepest-gradient

descent step rule

T = T (1− α(Acalculated −Aideal)) (12)

where T is the temperature and A is the acceptance rate. The additional parameter α controls the rate of change in

T ; it is a user-definable parameter, which controls the efficiency of the process, but does not affect its accuracy. This

adjustment scheme will compensate for the changing magnitude of the covariance matrix, which will produce more

or less scatter as the MCMC progresses, as well as for variance in RMS chi-square values between different samples,

which will affect overall acceptance.

Table 1. Best-fit parametersa

Model χ2 σ log(L∗
0/L�) log(Φ∗

0) zbp zbq p1 q1 p2 q2

fAGN,0 t1 t2 zbt fcomp
b

SPIRE 250µm-selected sample

PL 0.11 4.7 10.91+0.01
−0.09 −3.25+0.07

−0.04 1.38+1.33
−0.25 1.85+0.87

−0.72 −1.48+3.48
−1.47 3.76+1.45

−1.06 −1.87+1.96
−2.82 3.31+0.23

−6.10

0.26+0.11
−0.10 0.84+2.58

−0.89 1.19+2.87
−3.12 2.10+0.91

−0.15 0.18+0.51
−0.01

MS 0.12 4.2 10.08+0.06
−0.05 −2.36+0.10

−0.01 2.16+0.56
−1.05 1.20+1.31

−0.27 −1.42+2.06
−2.82 3.15+1.58

−1.53 −2.27+3.65
−1.72 4.27+0.40

−5.80

0.32+0.09
−0.12 2.78+1.74

−1.97 −0.12+3.22
−2.90 2.56+0.43

−0.60 0.77+0.02
−0.50

MIPS 24µm-selected sample

PL 0.11 7.1 10.89+0.02
−0.08 −3.23+0.04

−0.07 1.79+0.95
−0.59 2.68+0.13

−1.40 −0.48+3.49
−2.17 2.14+2.63

−2.49 −2.62+3.78
−1.82 −1.54+3.52

−2.76

0.28+0.12
−0.09 0.07+2.66

−0.65 −2.37+5.31
−1.06 2.72+0.34

−0.71 0.24+0.48
−0.05

MS 0.09 6.8 10.10+0.05
−0.05 −2.27+0.03

−0.08 1.56+0.99
−0.54 1.42+1.21

−0.37 −1.91+3.41
−2.06 3.05+1.43

−3.73 −0.95+2.59
−3.14 0.12+3.55

−2.97

0.30+0.10
−0.11 −0.20+2.70

−0.75 −3.09+5.69
−0.49 1.98+0.78

−0.25 0.43+0.30
−0.21

Joint results

PL / / 10.89+0.04
−0.09 −3.24+0.07

−0.08 2.02+0.99
−1.19 1.83+1.28

−0.97 −0.31+3.07
−2.88 3.78+1.49

−1.65 −2.16+2.41
−3.45 −1.40+5.60

−3.60

0.26+0.13
−0.12 0.71+2.14

−1.42 0.34+4.53
−3.79 2.25+0.97

−0.52 0.37+0.37
−0.29

MS / / 10.08+0.07
−0.06 −2.33+0.10

−0.05 1.36+1.33
−0.60 1.57+1.02

−0.89 −2.13+3.35
−2.25 3.30+1.55

−2.60 −2.16+3.58
−2.58 2.85+2.64

−5.38

0.30+0.16
−0.15 0.29+3.07

−1.14 −0.30+4.85
−3.79 2.11+0.82

−0.47 0.49+0.38
−0.34

aThe errors quoted represent the 68% confidence intervals.
b fcomp corresponds to the fraction of composites with respect to the whole AGN+composite population.

5. RESULTS

5.1. Model setup

We consider 2 models: one with a double power law luminosity function, “PL” hereafter; and one with a modified

Schechter luminosity function “MS” hereafter. For both models, we fix the shape parameters, α and β or σ. We

experimented with allowing those to vary as well, but there was too much degeneracy in the solutions for the results

to be illuminating. For the PL model we adopt α = 2.6, but did a grid search with different β values. We found

that while the solutions were degenerate (you can reach formally equally good fits with a wide range of β values), the
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Figure 4. Top: Observed data, model and residual for the SPIRE 250µm-selected sample fit. Bottom: Observed data, model
and residual for the SPIRE 24µm-selected sample. In both cases, we show the results for the PL model. In the residual panel,
we also show the standard deviation of the non-zero pixels.

comparison with external constraints (see Section 5.4) showed β= 0.6 to work best. These values are consistent with

the local LF measurements (see Figure 1). For the MS model we adopt α = 1.15 and σ = 0.52 (as in Gruppioni et al.

2013). We left log(Φ∗0) and log(L∗0) as free parameters whose allowed ranges were restricted to be consistent with the

dispersion in observed local LFs (see Figure 1). The local AGN fraction of 1012L⊙ galaxies, fAGN,0, was restricted to

the range 0.1-0.5, consistent with the uncertainty in Figure 3.

Our philosophy here is to input a relatively restricted model for the z ∼ 0 LFs, but assume no knowledge of how the
luminosity function evolves at higher redshifts. Obviously this is not typically necessary since we do have numerous

studies in the literature that do give constraints on the later, but in this first SurveySim paper we aimed to test how

close we get to these prior studies with as little restriction on our models as possible. To that effect, the evolutionary

parameters are sampled in the range -6 to 6, allowing for both strong negative and positive luminosity/density evolution.

The break redshifts, zbp, zbq are also very allowed a wide range from 0.5-3.5. The composite fraction, fcomp is allowed

to vary from 0 to 1. We found that similarly wide ranges on the AGN fraction evolutionary parameters while allowing

good overall fits to the total LF, consistently underestimated the AGN LF. To alleviate this we applied still wide, but

more restricted ranges. Specifically, t1 is allowed for vary from -1 to 6, t2 varies from -6 to 6 and zbt from 1.5-3.5.

5.2. Simulating the Herschel/SPIRE Sources

The models described in the previous section were fit individually to the two HerMES datasets described in Section 2.

For the SPIRE-selected sample we used the log(S350/S250) vs. log(S250) diagnostic plot and for the MIPS-selected

sample we used log(S250/S24) vs. log(S24) plot10. The goal of this exercise was to test the degree to which our

conclusions depend on the specific diagnostic and/or sample selection applied.

Figure 4 shows examples of the observed, model, and residual images for each of the two samples, based on the PL

10 We also tested that the results remain qualitatively the same when the log(S350/S250) vs. log(S250) plot is used for the MIPS-selected
sample as well.
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model. We find that the residuals are fairly low, at roughly 10% level. The residual sub-structure, particularly clear

in the bottom-middle panel in Figure 4, is due to discontinuous jumps in the SED library (see Figure 2), while some of

the residuals are unaccounted for populations (Section 6.1). We examine the degree to which these fits are consistent

with the models being a good representation of the data and its uncertainties in Section 5.3.

Table 4.2 presents the best-fit parameters and their 68% confidence levels associated to our two models and for each

of the HerMES samples. Given the typically significant 1σ uncertainties, we obtain consistent evolutionary parameters

for all models.

Figure 5. Joint MCMC posterior probability distributions for the evolutionary parameters p1 and q1. Individual runs with the
SPIRE-selected and MIPS-selected samples are shown in greyscale. The joint probability distributions are marked with thick
red contours. The same colors and linewidths apply to the 1d marginalized distributions shown on top and to the left of each
panel. In all cases, the inner and outer contours represents respectively 68% and 95% confidence levels. The best joint value is
plotted as a star. The key conclusion is that without any explicit redshift input, SurveySim favors strong luminosity evolution
coupled with weak or negative density evolution until z ∼ 1 − 2, where the best-fit break redshifts are found. As expected,
including more data narrows the probability distributions, i.e. improves the constraints on the model parameters.

The MCMC chains for the two samples can be combined in order to find the joint probability distributions for

the various parameters. This is given by Pjoint =
∏
i=1 Pi, where i is a given sample. Figure 5 illustrates this idea.

This procedure highlights how in the future we can obtain even tighter constraints on the evolution of the luminosity

function by combining fits to many different samples, especially ones selected in different parts of the IR SED (Bonato

et al. 2016 in prep.).

Lastly, we examined each pair of parameters for each model for signs of correlations/degeneracy. By far the strongest

correlation is found between the luminosity and density evolution parameters, p1 and q1 (shown in Figure 5).

5.3. Goodness-of-fit

Our χ2-like statistic (see Table 4.2) is difficult to directly interpret in terms of goodness-of-fit because the data

points here are neither uncorrelated nor necessarily obey Gaussian statistics. Therefore, we tested the goodness-of-fit

by making 500 Monte Carlo realizations of the log(S24) vs log(S250/S24) diagnostic plot. In each realization, we add

Gaussian errors of σ24 = 16µJy and σ250 = 3.2 mJy to the catalog fluxes, re-apply the selection criteria and re-generate

the density plot. The same procedure is used to estimate the χ2 between each realization and the original image as is

used by SurveySim. The distribution in resulting χ2 values is shown in Figure 6. This plot suggests that our model

realization is consistent with the data within the errors given. However, the median 250µm error in the HerMES-

COSMOS Spitzer-prior catalog is ∼ 2 mJy or 50% lower that we have adopted here. Given the large uncertainties

in the contribution of confusion and the effect of flux de-boosting to the total error budget, the larger error seems

justified. Of course, this can also indicate the level of systematic uncertainty associated with the model, which is

expected to be non-zero (see Section 6.1 for some likely systematics).

We performed the same test in the case of the SPIRE-diagnostic (i.e. log(S250) vs log(S350/S250)). Using the

median catalog errors, we obtained a χ2 distribution that peaked at 0.22 whereas the model best-fit has χ2 of 0.11 (see
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Figure 6. Goodness-of-fit estimates for the MIPS-diagnostic (Left) and the SPIRE-diagnostic (Right). In both cases, the
distribution is the result of 500 Monte Carlo realizations applying Gaussian errors to the catalog photometry, regenerating the
given diagnostic plot, and computing our χ2-like statistic between each realization and the original diagnostic plot. The vertical
dashed lines show the best-fit model χ2 values (Table 4.2). See Section 5.3 for further details.

Table 4.2). Therefore, in contrast to the MIPS-diagnostic cases, here we are seeing evidence of overestimated errors.

We needed to lower the nominal SPIRE errors substantially (by a factor of 2.5) to bring our Monte Carlo simulations

in agreement with the model best-fit values (this is what is plotted in Figure 6 Right). The bulk of the error in these

SPIRE catalogues is confusion errors. A likely cause of this apparent error reduction is the fact that confusion errors

on S250 and S350 are correlated, simply because boosting one due to the underlying faint source distribution would

inevitably boost the other as well. Therefore, the error on the SPIRE color would be less than implied if the errors on

each flux density are assumed to be independent. Ultimately however, we emphasize that this is a χ2-like statistic that

should be treated with caution as it is also affected by the amount of “white space” in the diagnostic as well as how

the model and observations compare in the pixels that are populated. As we discuss in Section 6, we plan to expand

SurveySim to allow for other statistics so that the effect thereof can be explicitly tested.

5.4. Comparison with external data

In Figures 7-13, we compare our best-fit model results, based on the joint probability distributions (see Table 4.2),

with a wide range of observational constraints. In all cases, the 68% uncertainties are shown as greyscale bands. These

are derived very conservatively simply by looking at the parameter posterior probability distributions in the MCMC

chains where the first half of the chain is removed (i.e. the burn-in period). The errorbars can be significantly reduced

by making additional cuts in χ2 which effectively only keep chain links close to the best-fit solution. However, this is

not going to be representative of the full probability distribution. Therefore, the substantial uncertainties shown are
genuine and encompass all possible solutions, rather than representing the uncertainty on the best-fit model alone.

The later can be seen as the spread among the best-fit solutions of multiple SurveySim runs, and as expected this is

substantially smaller than the nominal 68% uncertainty shown in the plots. While for simplicity we only show this once

(in Figure 7), we tested that this is the case for all the comparison plots shown. The following sub-sections describe

the different comparisons.

5.4.1. Luminosity functions

In Figure 7top, we compare our best-fit models with direct measurements of the total IR LF at three representative

redshifts. Here, corrections for slight differences in LTIR definitions or cosmology are not applied, but these are very

small based on our experience with Figure 1 where they are applied. The significant scatter is therefore dominated by

selection biases. We find that our models, especially the PL model, achieve excellent agreement with these literature

values. Note that while the nominal 68% uncertainties are quite large, the best-fit solutions are robust. This can be

seen in Figure 7middle where the better fitting PL model was run 6 times (similar results are found for the MS model

as well). The scatter between these solutions is significantly smaller than the nominal uncertainty per run. Lastly, in

Figure 7bottom, we compare the best-fit AGN LFs with the observed AGN IR luminosity function of Lacy et al. (2015).

Both models are reasonably consistent with the data from Lacy et al. (2015). Again the spread between multiple runs

here is much smaller than the nominal uncertainty per run.

5.4.2. Number counts



13

Figure 7. Top: Comparison, at 3 different redshifts, between our model total IR LFs and observational determinations taken
from the datasets: Magnelli et al. 2009 (violet open diamonds), Magnelli et al. 2011 (orange open upward triangles), Magnelli
et al. 2013 (green filled circles), Caputi et al. 2007 (black open squares), Lapi et al. 2011 (red open downward triangles), Le
Floc’h et al. 2005 (lobster filled squares), Rodighiero et al. 2010 (pale blue filled diamonds), Gruppioni et al. 2013 (grey filled
upward triangles) and Vaccari et al. 2010 (blue open circles). For clarity, we only show the 68% confidence levels for the PL
model. These uncertainties are large as expected given that the model has been run ‘blind’ – i.e. without any information on
the redshift evolution of the LF. Despite using only the color-magnitude distribution of HerMES sources, SurveySim is able
to arrive at a good solution. Middle: The PL model run 6 times. Note that the spread among the best-fit solutions here is
significantly smaller than the uncertainty per run. This is seen for all comparison plots in this section, although only shown
explicitly here. Bottom: The same for the AGN IR LFs. Here we compare to the observational determinations by Lacy et al.
(2015).

Figure 8 compares our best-fit Euclidean normalized differential number counts with observational data at 9 different

wavelengths (from 15 to 1100 µm). Figure 9 does the same for the AGN number counts at 15 and 24µm. To first order

the agreement between model and counts is good, especially for the PL model. The MS model tends to underestimate
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Figure 8. Model differential number counts compared with observational determinations taken from: Takagi et al. 2012 (at 15
and 24µm; pale blue filled diamonds), Hopwood et al. 2010 (15µm; lobster filled squares), Pearson et al. 2010 (15µm; violet
open downward triangle), Papovich et al. 2004 (24µm; red filled downward triangle), Béthermin et al. 2010 (24µm, blue open
circles), Berta et al. 2011 (70 and 100µm, orange open upward triangles), Béthermin et al. 2012b (250, 350 and 500µm, cyan
stars), Oliver et al. 2010 (250, 350 and 500µm, purple filled circles), Glenn et al. 2010 (250, 350 and 500µm, olive filled upward
triangles), Coppin et al. 2006 (850µm, black open squares), Scott et al. 2012 (1100µm, green open diamonds) and Hatsukade
et al. 2011 (1100µm, brown filled right-facing triangles). We show the uncertainty regions associated with the PL model.

Figure 9. Our model AGN only 15 and 24µm counts compared with data from Teplitz et al. 2011 (15µm; green circles), Brown
et al. 2006 (24µm; cyan squares) and Treister et al. 2006 (24µm; violet triangles). The agreement is generally good, the PL
model shows slightly overestimated 24µm counts.

the counts at the faint-end, which is likely related to its adopted shallower faint-end slope (see Figure 7). Our results

clearly favor a steeper faint-end slope. Even for the PL model there are some significant deviations. First, there is an

indication of underestimating the peak of the SPIRE counts which may be due to the overly simplistic SED library
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Figure 10. The relative contribution of SFGs, AGN and Composites to the the S24µm population as a function of flux. This
plot mimics the same plot in Kirkpatrick et al. (2015).

Figure 11. Model redshift distributions for 24µm-selected and 250µm-selected sources considering the flux limits given in each
panel. These are compared with observational determinations taken from Le Floc’h et al. 2009 (cyan squares), Rodighiero et al.
2010 (violet triangles) and Casey et al. 2012 (green circles). Note that at 250µm, we only include star-forming galaxies in
our model redshift distributions as the comparison Casey et al. 2012 sample is composed of star-forming galaxies. The Casey
et al. (2012) redshift distribution is also corrected for spectroscopic completeness (as shown in their Figure 12). We show the
uncertainty regions associated to the PL model.

(see Section 6.1. Second, the sub-mm counts are also underestimated. Part of this may be due to missing populations

again, such as missing very cold SED sources (see Bonato et al. in prep.), but the biggest reason here is that our

results are less reliable beyond z ∼ 2 due to the paucity of sources in that regime in our samples. Because of this, we

did not show luminosity functions at higher redshifts in Figure 7, but our results do underestimate the higher-z regime

as shown in Section 5.4.5. The (sub-)mm counts however have a significant contribution from sources at z > 2 which
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Figure 12. Comparison between our best-fit models and observed CIB determinations from Lagache et al. 1999 (green circles),
Wright 2004 (violet triangles), and Planck Collaboration et al. 2014 (cyan squares). Left The total CIB for our PL and MS
models (the uncertainty region is associated to the PL model). Right Contribution to the CIB by galaxies in different redshift
ranges for the PL model (the uncertainty region is associated to the total).

accounts for the discrepancy seen here. The large excess in the (sub-)mm counts seen for the MS model is the result

of the vastly overestimated luminosity function beyond z > 2 in this case. For example, see Table 4.2 where q2 for the

MS model is 2.85 vs. -1.40 for the PL model – the errorbars in both cases are huge due to the poor constraints in

this regime). Lastly, we underestimate the faint-end of the 15 and 24µm counts for star-forming sources. We see this

because for the AGN counts alone (Figure 9) we see a bit of an excess, which may be due to the studies besides these

counts data requiring X-ray counterparts which may miss the most obscured AGN, but is likely also affected by the

uncertainties in the low-L end of the AGN luminosity function.

Figure 10 shows explicitly the relative contribution of SFG, AGN and Composites to the 24µm population. Our

model is in broad agreement with the empirical determination of this breakdown presented in Kirkpatrick et al. (2015).

However, as indicated above, our model does tend to have a stronger AGN component relative to the SFG component.

We believe this issue might also arise due to limitation of the SED template library which we speculate on in Section 6.1.

5.4.3. Redshift distributions

Figure 11 compares our model predictions with the observed redshift distributions at 24µm (left-hand panel) and at

250µm (right-hand panel). The 1σ uncertainties here are very large, but again the spread between best-fit solutions

from multiple runs is much smaller. The overall agreement between predicted and observed redshift distributions is

reasonably good. The slight deficit in the 24µm counts at z ∼ 0.5 − 1 is consistent with the deficit observed in the

faint-end of the 15µm and 24µm counts (see Section 5.4.2).

5.4.4. Contribution to CIB

The total contribution to the Cosmic Infrared Background (CIB) as well as its breakdown by redshift is shown in

Figure 12. We reproduce the CIB quite well. In our model, the CIB is completely dominated by star-forming galaxies.

Shortward of ∼ 100µm, the CIB is largely made up of z < 1 galaxies, whereas at longer wavelengths z > 1 galaxies

dominate. This is consistent with the study of Jauzac et al. (2011), who found that 81% of the 70µm CIB was emitted

at z < 1.

5.4.5. Star-formation rate density

Figure 13 shows a comparison between our model predictions for the SFR density with data from the recent review of

Madau & Dickinson (2014). For this comparison, we needed a few additional assumptions. Our model includes SFGs,

AGN, and Composites, but each population has some star-formation rate which needs to be included in the total.

Roebuck et al. (2016, in prep.) have TIR AGN fractions that include the effects of host galaxy reprocessing of the

AGN light and find median fractions of 4, 66 and 39% for SFG, AGN, and Composites respectively. These fractions

are used to correct for the AGN contribution to TIR of each population. The remaining LTIR,SF is converted to SFR

using the same relation used in Madau & Dickinson (2014) (their Eq.11, with κIR = 4.5 × 1044 in cgs units)11. Our

model recovers the increase in SFR density from today until z∼ 2. However, there is a slight deficit at z∼ 0.5-1. This

11 In order to be completely consistent with Madau & Dickinson (2014) data, we also consider a LTIR integrated in the 8-
1000µmwavelength interval and their same integration of the luminosity function (i.e. down to the relative limiting luminosity, in units of
the characteristic luminosity L∗, of Lmin = 0.03 × L∗).
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is the result of the slightly higher weight of AGN relative to SFG in our model as already discussed in Subsection 5.4.2.

Our model strongly underestimates the SFR density past z∼ 2, but this is a regime that is not probed by our data

therefore the results therein are not well constrained.

Figure 13. Comparison between our model SFR density estimates and observational average observational estimate given in
the recent review Madau & Dickinson (2014). We show the uncertainty regions associated to the PL model.

6. DISCUSSION

6.1. Need for expanded SED library

In this paper, our approach has been to largely fix the shape of the LF and limit the range of the parameters

governing it at z ∼ 0 to be consistent with local observations, but we have allowed very wide ranges for the evolutionary

parameters. For both models and both datasets, luminosity evolution is favored over density evolution until the break

redshifts of z∼ 2. This is consistent with earlier studies (e.g. Caputi et al. 2007; Marsden et al. 2011; Gruppioni

et al. 2013). Beyond these break redshifts, the evolutionary parameters are more uncertain since the data used in

this paper are not significantly probing higher redshifts (see Figure 14). In the same figure, we address another key

issue. The residual image for the MIPS fit shows that the faint and red tip of the distribution is underestimated

by our model (see Figure 4). Figure 14right shows that our high redshift SFG SED templates do not quite reach

this regime, i.e. they remain too blue. Examining the z∼ 0 SFG templates’ coverage of the MIPS color-magnitude

diagnostic plot (Figure 14left) shows these templates to be redder and fainter for a given redshift and luminosity than

the corresponding z∼ 1 templates (see also Figure 2). Therefore the “missing” flux-color combination seen in the

MIPS residual image (see Figure 4) can be reproduced by the local SFG SEDs (specifically local ULIRGs) at higher-z.

However, if we adopted the local SFG templates wholesale we would achieve much worse fits overall since the entire

high-z population shifts to redder colors rather than a small sub-part as observed. This difference in colors matches

the observed difference between z ∼ 2 main-sequence vs. off main-sequence star-forming galaxies presented in Elbaz

et al. (2011). The galaxies behind our SED library at z > 0 are all on the main-sequence (for their redshifts) thus

representing the more typical galaxies. Indeed, Béthermin et al. (2012a) include both galaxies on and off the main

sequence in their galaxy evolution model and show that main sequence galaxies are by far the dominant component,

consistent with the good fits we achieve with only this component. However, adding a small admixture of off main

sequence galaxies at high-z would further reduce the observed residuals here.

An additional issue is that our library does not include Type 1 AGN, our AGN templates are more representative

of obscured AGN (see Figure 2). For comparison, the SEDs of unobscured quasars (as in Richards et al. 2006) have

a lower far- to mid-IR ratio i.e. less warm/cold dust relative to hot dust than our templates (see Xu et al. (2015) for

further discussion on the IR SEDs of AGN). Constraining part of the AGN to have this type of SED ultimately lowers
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the overall AGN component in our model and boosts the SFG galaxies (including slightly better fits to the SPIRE

counts and SFR density). In Bonato et al. (in prep.) we experiment with expanding the SED library to allow for

multiple star-forming galaxy SEDs and multiple AGN SEDs.

Figure 14. The log(S24) vs. log(S250/S24) color-magnitude plot sampled by our SFG z∼ 0 templates (left) vs. z∼ 1 templates
(right). Note that at higher redshifts/higher luminosities the z∼ 0 templates are redder and fainter than the corresponding
z∼ 1 templates.

6.2. The role of SurveySim

During the last decade, many galaxy evolution models for IR galaxies and AGNs have been developed (e.g., Lagache

et al. 2003;Valiante et al. 2009; Rowan-Robinson 2009;Le Borgne et al. 2009, Franceschini et al. 2010; Gruppioni et al.

2011; Marsden et al. 2011; Béthermin et al. 2011; Béthermin et al. 2012a; Cai et al. 2013). Most of these describe the

evolution of multiple galaxy populations, assuming different SEDs and different evolutionary properties. A few take

into account AGN (e.g. Valiante et al. 2009; Cai et al. 2013). MCMC has been used in a number of these to constrain

the model uncertainties (e.g. Valiante et al. 2009; Marsden et al. 2011; Béthermin et al. 2011). Le Borgne et al. 2009

present a non-parameteric study of the IR luminosity function evolution based on inversion of the counts across the

IR SED, an SED library and the constraint that the observed CIB should be matched. SurveySim builds upon this

legacy with the following key features:

1) the current implementation of SurveySim does not use in the fit any direct redshift information (but we do include

the redshift evolution of the SEDs encoded in our SED library), nor does it use CIB measurements to constrain the

fit. It uses nothing but flux and color information. So the luminosity functions, number counts, redshift distributions,
SFR density and contribution to the CIB shown in Fig. 7 represents predictions worked out by SurveySim, rather than

model fits.

2) SurveySim does not hardwire either its SED template library, nor its model settings. Everything that is uncertain

and that we are likely to want to update is fed into the MCMC-core externally. Even the focus on the IR regime here

is external to the code – SurveySim adopts its wavelength array from the SED library it is fed.

3) SurveySim is written as a survey simulator, which means it models the selection function of a particular dataset,

including the completeness function. In principle, if all parameters are fixed, SurveySim does not require a dataset

input, but can be run in pure simulation mode allowing for predictions for future surveys, including redshift/galaxy

type distributions etc.

4) SurveySim fits in color-magnitude space rather than the more common counts fits. This makes it easier to distinguish

different populations. For example, the lack of sufficiently red high-z galaxies in the log(S250/S24) color is now easily

apparent (see Figure 14), whereas such limitations can only be speculated on given discrepancies in the counts (e.g. Le

Borgne et al. 2009).

5) SurveySim’s MCMC structure allows for the constraints on the evolution of luminosity functions to be improved by

combing the posterior probability distributions for the model parameters based on fitting different datasets. In Bonato

et al. (2016 in prep.) we test our model on a wider set of IR-selected populations (from mid-IR to mm-selected)

which allows us to both better constrain the evolution of the IR luminosity function, but also explicitly understand

the selection biases inherent in each of these selections.
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6.3. Future improvements

This is the first paper on SurveySim and presents version 1 of the code demonstrating its use in an application

to the HerMES blind and Spitzer-prior SPIRE catalogs. SurveySim reproduces reasonably well the color-magnitude

diagnostic plots for these catalogs, and the corresponding best-fit models are consistent with a wide range of external

data. However, there are several areas in which we plan to improve the code as well as expand the range of its

applicability. How different populations are included and how this mix evolves with redshift is currently the greatest

uncertainty (one aspect of it is discussed above). Generalizing SurveySim beyond the 3 populations it currently assumed

is the first step to allow SurveySim to operate in other parts of the spectrum including optical and near-IR on one hand,

and radio on the other. SurveySim currently does not include the effects of lensing which are significant especially

at brighter flux-densities in the (sub)mm regime. These can be included in a manner similar to the completeness

curve. There are a couple of more technical improvements we would like to implement as well. For parameters that

are known to be highly degenerate, a transformation can be made to diagonalize them in the correlation matrix. For

example, p1 and q1 are found to be highly degenerate, but we can replace q1 with new variable which is linear in p and

has an adjustable slope and offset, trading an extra parameter for a much less degenerate space, which will allow for

more efficient sampling and better defined parameter uncertainties. Lastly, we are planning to implement a choice of

statistic (currently a 2-d χ2) to test the results thereof on the performance of the code.

7. SUMMARY AND CONCLUSIONS

In this paper, we present the technical aspects of our new galaxy luminosity function simulation and fitting code,

SurveySim. We demonstrate the use of the code by fitting the diagnostic plots – log(S24) vs. log(S250/S24) and

log(S250) vs. log(S350/S250), which allows us to constrain the evolution of the IR luminosity function. Our results

are consistent with previously published luminosity functions, number counts, redshift distributions, cosmic infrared

background (CIB) total SED and redshift break-down, and the cosmic star-formation rate density. This demonstrates

both that our statistical approach and SED library are working and provides a potential avenue for the study of large

populations of galaxies when spectroscopic follow-up or even individual galaxy SED fitting are impractical.

We have made SurveySim public and welcome input from the community both in reporting any bugs founds, and

suggestions for making it even more general in nature. The code, including the python interface and User’s guide can

be downloaded from http://cosmos2.phy.tufts.edu/~asajina/SurveySim.html.
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APPENDIX

A. FITTING 2D HISTOGRAMS

The major hurdle to working with the 2D histograms discussed in Section 3.4 is the abundance of zero-valued

histogram bins. We employ the bin size selection method outlined in Scott (1979), where the ideal bin size for a

sample of size N with standard deviation σ is ∆α = 3.49σ
3√
N

. This formula was experimentally found by Scott (1979) to

best balance the need to minimize whitespace and statistical error while maintaining as much resolution as possible

(see Figure A1).

The goodness-of-fit statistic we employ is the 2-D reduced χ2, although altered to eliminate the “0” problem described

above. These alterations mean good fits will always drop below unity in this statistic. To begin with, we assign the

histogram bins standard Poisson errors, using tabulated values for bins less than 100, and otherwise assigning the bins

σ =
√
N + 1 (Bagaud et al. 2005), where N is the number of galaxies in the bin. The Poisson bin uncertainties for

both the model and observed 2-d histogram are added in quadrature leading to a 2-D χ2 of:

χ2 =
1

n

n,n∑
i,j=1

(Oi,j −Mi,j)
2

σ2
Oi,j

+ σ2
Mi,j

(A1)

where i and j refer to column and row indices, and n is the side length in number of bins of our two-dimensional

histogram. Here “O” and “M” refer to the observed and model histograms respectively. By employing Poisson errors,

which are non-zero for bins with zero values, we ensure that the χ2 formula is valid for all integer bin values. On the
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Figure A1. The effect of varying bin-width and sample size on the quality of the density histogram produced. The middle
column shows histograms sized according to the Scott (1979) formula (which we adopt), while the left hand column shows
histograms with twice this bin width, and the right hand column half this binwidth. The histograms on the right are too
fragmented and contain too much whitespace in what should be high density areas. The histograms on the left solve this
problem, but sacrifice detail, reducing the resolution with which models can be compared against one another.

other hand, this approach gives more weight to areas of higher density, as they have lower comparable error to those

bins with only a few sources.

B. CONVERGENCE TESTING

Convergence testing is the least standardized aspect of MCMC implementations, with much more variance than

sampling algorithms (see e.g. Cowles & Carlin 1996; Dunkley et al. 2005). If we define the ratio r =
σ2
x

σ2
0

where σ2
0 is

the parameter variance of the prior distribution, and σ2
x is the variance achieved by the MCMC code, the code is said

to have converged when r reaches 1 or slightly above depending on the precision to which a given parameter(s) are

desired.

However, this ideal metric requires knowledge of the prior variance, which is one of the unknowns we are trying to

determine. Various convergence tests represent means of approximating this ratio without knowledge of the underlying

distribution variance (e.g. Dunkley et al. 2005; Allison & Dunkley 2014). Here we follow Brooks & Gelman (1998),

who test convergence based on m independent chains of length 2n and a desired confidence limit α. The specific steps

are:

1. Calculate the confidence intervals, CIm = 100(1− α)%, for each of the m chains from the last n chain links.

2. Calculate the total interval, CIT for the combined n links of all m chains.

3. Calculate the convergence parameter, R∼ 1 + r, as:

R =
CIT

CIm
(B2)

The advantage of this method is that no assumption is made about the shape of the prior distribution, whereas other

methods generally assume a Gaussian form (Brooks & Gelman 1998).
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Figure B2. Convergence R criterion as a function of convergence test number, showing initial variance due to sampling change,
and then steady decrease until all parameters lie below the convergence threshold. The left and right plots show similar trends for
MIPS (left) and SPIRE (right) fields, with convergence time increasing with data volume. This demonstrates that convergence is
robust to dimensionality and that convergence time is dominated by data volume. In addition, we found it is mainly dominated
by a few of the high-variance, high-degeneracy parameters, as removing a few of the less degenerate parameters did not change
the convergence time for either sample.

For example, if we want a set of chains which approximate the prior distribution to within a 95% confidence level,

we set r = 0.05 and accordingly R = 1.05 as our convergence limit. The simulation is considered converged if

all parameters have an R values below this limit. Figure B2 shows the R criterion as a function of time, where

convergence was evaluated once for every 20 MCMC iterations. The initial learning of the covariance matrix and

temperature can be seen in the initially higher variability, and we see the gradual descent as the sampling algorithm

stabilizes.

For strict convergence (r = 0.01), Dunkley et al. (2005) found that optimal convergence can be expected in ∼ 220D

steps, where D is the dimensionality of the sampling space. Our results suggest that at the r = 0.05 level, we can

expect convergence to be proportional to the degeneracy of the space, as introducing additional parameters here which

are non-degenerate does not significantly increase convergence time. In this paper, we adopt R = 1.05, i.e. we require

95% convergence confidence.


